Jumat, 29 Januari 2010

Tropical cyclone

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Hurricane" redirects here. For other uses, see Hurricane (disambiguation).
Hurricane Isabel (2003) as seen from orbit during Expedition 7 of the International Space Station. The eye, eyewall and surrounding rainbands characteristic of tropical cyclones are clearly visible in this view from space.

A tropical cyclone is a storm system characterized by a large low-pressure center and numerous thunderstorms that produce strong winds and heavy rain. Tropical cyclones feed on heat released when moist air rises, resulting in condensation of water vapor contained in the moist air. They are fueled by a different heat mechanism than other cyclonic windstorms such as nor'easters, European windstorms, and polar lows, leading to their classification as "warm core" storm systems. Tropical cyclones originate in the doldrums near the equator, about 10° away from it.

The term "tropical" refers to both the geographic origin of these systems, which form almost exclusively in tropical regions of the globe, and their formation in maritime tropical air masses. The term "cyclone" refers to such storms' cyclonic nature, with counterclockwise rotation in the Northern Hemisphere and clockwise rotation in the Southern Hemisphere. Depending on its location and strength, a tropical cyclone is referred to by names such as hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone.

While tropical cyclones can produce extremely powerful winds and torrential rain, they are also able to produce high waves and damaging storm surge as well as spawning tornadoes. They develop over large bodies of warm water, and lose their strength if they move over land. This is why coastal regions can receive significant damage from a tropical cyclone, while inland regions are relatively safe from receiving strong winds. Heavy rains, however, can produce significant flooding inland, and storm surges can produce extensive coastal flooding up to 40 kilometres (25 mi) from the coastline. Although their effects on human populations can be devastating, tropical cyclones can also relieve drought conditions. They also carry heat and energy away from the tropics and transport it toward temperate latitudes, which makes them an important part of the global atmospheric circulation mechanism. As a result, tropical cyclones help to maintain equilibrium in the Earth's troposphere, and to maintain a relatively stable and warm temperature worldwide.

Many tropical cyclones develop when the atmospheric conditions around a weak disturbance in the atmosphere are favorable. The background environment is modulated by climatological cycles and patterns such as the Madden-Julian oscillation, El Niño-Southern Oscillation, and the Atlantic multidecadal oscillation. Others form when other types of cyclones acquire tropical characteristics. Tropical systems are then moved by steering winds in the troposphere; if the conditions remain favorable, the tropical disturbance intensifies, and can even develop an eye. On the other end of the spectrum, if the conditions around the system deteriorate or the tropical cyclone makes landfall, the system weakens and eventually dissipates. It is not possible to artificially induce the dissipation of these systems with current technology.

Spread of rocket technology

Genghis Khan's Mongols spread Chinese technology

Rocket technology first became known to Europeans following its use by the Mongols Genghis Khan and Ögedei Khan when they conquered parts of Russia, Eastern, and Central Europe. The Mongolians had acquired the Chinese technology by conquest of the northern part of China and also by the subsequent employment of Chinese rocketry experts as mercenaries for the Mongol military. Reports of the Battle of Mohi in the year 1241 describe the use of rocket-like weapons by the Mongols against the Magyars.[5] Rocket technology also spread to Korea, with the 15th century wheeled hwacha that would launch singijeon rockets. Additionally, the spread of rockets into Europe was also influenced by the Ottomans at the siege of Constantinople in 1453, although it is very likely that the Ottomans themselves were influenced by the Mongol invasions of the previous few centuries. In their history of rockets published on the Internet, NASA says "Rockets appear in Arab literature in 1258 A.D., describing Mongol invaders' use of them on February 15 to capture the city of Baghdad."[5]

Between 1270 and 1280, Hasan al-Rammah wrote al-furusiyyah wa al-manasib al-harbiyya (The Book of Military Horsemanship and Ingenious War Devices), which included 107 gunpowder recipes, 22 of which are for rockets.[9] According to Ahmad Y Hassan, al-Rammah's recipes were more explosive than rockets used in China at the time.[10]

The name Rocket comes from the Italian Rocchetta (i.e. little fuse), a name of a small firecracker created by the Italian artificer Muratori in 1379.[11]

Between 1529 and 1556 Conrad Haas wrote a book in which he described rocket technology, involving the combination of fireworks and weapons technologies. This manuscript was discovered in 1961, in the Sibiu public records (Sibiu public records Varia II 374). His work dealt with the theory of motion of multi-stage rockets, different fuel mixtures using liquid fuel, and introduced delta-shape fins and bell-shaped nozzles.[12]

For over two centuries, the work of Polish-Lithuanian Commonwealth nobleman Kazimierz Siemienowicz "Artis Magnae Artilleriae pars prima" ("Great Art of Artillery, the First Part", also known as "The Complete Art of Artillery"), was used in Europe as a basic artillery manual.[13] First printed in Amsterdam in 1650 it was translated to French in 1651, German in 1676, English and Dutch in 1729 and Polish in 1963. The book provided the standard designs for creating rockets, fireballs, and other pyrotechnic devices. It contained a large chapter on caliber, construction, production and properties of rockets (for both military and civil purposes), including multi-stage rockets, batteries of rockets, and rockets with delta wing stabilizers (instead of the common guiding rods).

History of rockets

Main article: History of rockets
See also: Timeline of rocket and missile technology
[edit] In antiquity
Early Chinese rocket.

The availability of black powder (gunpowder) to propel projectiles was a precursor to the development of the first solid rocket. Ninth Century Chinese Taoist alchemists discovered black powder while searching for the Elixir of life; this accidental discovery led to experiments in the form of weapons such as bombs, cannon, incendiary fire arrows and rocket-propelled fire arrows.[nb 1][nb 2] The discovery of gunpowder was probably the product of centuries of alchemical experimentation.[4]

Exactly when the first flights of rockets occurred is contested. Some say that the first recorded use of a rocket in battle was by the Chinese in 1232 against the Mongol hordes. There were reports of fire arrows and 'iron pots' that could be heard for 5 leagues (25 km, or 15 miles) when they exploded upon impact, causing devastation for a radius of 600 meters (2,000 feet), apparently due to shrapnel.[5] The lowering of the iron pots may have been a way for a besieged army to blow up invaders. The fire arrows were either arrows with explosives attached, or arrows propelled by gunpowder, such as the Korean Hwacha.[nb 3]

Less controversially, one of the earliest devices recorded that used internal-combustion rocket propulsion was the 'ground-rat,' a type of firework, recorded in 1264 as having frightened the Empress-Mother Kung Sheng at a feast held in her honor by her son the Emperor Lizong.[7]

Subsequently, one of the earliest texts to mention the use of rockets was the Huolongjing, written by the Chinese artillery officer Jiao Yu in the mid-14th century. This text also mentioned the use of the first known multistage rocket, the 'fire-dragon issuing from the water' (huo long chu shui), used mostly by the Chinese navy.[8]

ROCKET

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about vehicles powered by rocket engines. For other uses, see Rocket (disambiguation).
A Soyuz-U, at Baikonur Site 1/5.
Apollo 15 launch.ogg
Play video
Launch of Apollo 15 Saturn V rocket: T-30s through T+40s.

A rocket or rocket vehicle is a missile, spacecraft, aircraft or other vehicle which obtains thrust by the reaction of the rocket to the ejection of a jet of fast moving fluid exhaust from a rocket engine. Chemical rockets create their exhaust by the combustion of rocket propellant. The action of the exhaust against the inside of combustion chambers and expansion nozzles is able to accelerate the gas to hypersonic speed, and this exerts a large reactive thrust on the rocket (an equal and opposite reaction in accordance with Newton's third law).

Rockets, in the form of military and recreational uses, date back to at least the 13th century.[1] Widespread military, scientific, and industrial use did not occur until the 20th century, when rocketry was the enabling technology of the Space Age, including setting foot on the moon.

Rockets are used for fireworks, weaponry, ejection seats, launch vehicles for artificial satellites, human spaceflight and exploration of other planets. While comparatively inefficient for low speed use, they are very lightweight and powerful, capable of generating large accelerations and of attaining extremely high speeds with reasonable efficiency.

Chemical rockets store a large amount of energy in an easily-released form, and can be very dangerous. However, careful design, testing, construction and use minimizes risks.